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Abstract

The I-iurnanGnome Project has as its eventual goal the detcrrnina,ion of O-centire
DNA sequence of man, which comprises approximately 3 b]ilion base ptiirs. An importimt
aspect of this project will be the analysis of the sequence to locate regions of biclogicul
itnportance, New computer methods will be needed to automate and facilitate this task, In
this paper, we have investigated the usc of neural networks for the recognition of functional
ptitterns in biological sequences, The prediction of Escherichiu (,oli transcriptional
promoters was chosen as a model system for these studies, Two [~pproaches WC:G
employed. In the first method, a mutual information atmlysis of promoter and non-
promotcr sequences was carried out to determine the informative batscpositions that help to
distinguish protnoter scquenccs from non-promoter sequences. These base positions were
then Lsed to tritin iI Ferceptron to predict new promoter sequcnccs. In the second rneth(xi,
the cxpcrirncnttil knov’ledge of prurnotcrs wtis used to indicate the imporwnt base positions
in the scquctwc, These base positions were used to train a back proptigtition network with
hidclcn units which represented regions of sequence conservt!tion found in promoters.
With both types of networks, prediction of new promoter sequerv.xs wtts greuter [hiin

96. 9%
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Introduction

The increase in the number of kicdogical sequences necessitates the development of
computer methods for the prediction and analyses of important functional regions. These
analyses should identify significant patterns to guide researchers in their experimental
efforts to elucidate the functional role of a particular rrucleic acid or protein sequence.
There are a number of computer methods that have been applied to the recognition of
specific patterns in biological sequences. These include corisensus sequence matching,
probability matrices, and various scoring techniques based on nucleic acid or protein
similarities (for reviews see Waterman, 1989; Doolittle, 1990).

In this study we have investigated the use of various neural network architectures
for the recognition of transcriptional promoter sequences drrived from the bacterium
Escherichiu coli. E. cofi promoters can be recognizd by two somewhat conserved six-base
sequences, termed the -35 and -10 regions (see Figure 1A). The numbering refers to their
approximate distances from the start of transcription. The -.35region has the consensus
sequence “ttgaca”, and the -10 region has the consensus sequence “tataat”. Most promoters
do not contain these exact sequences. The separation distance between these two regions
can vary from 15 to 21 bases, with an average of 17-18 bases, Previous analyses of
promoter sequences used consensus sequence matching and base probability matrices to
predict promoter sequences (Hnwley and McClure, 1983; Mulligan, et al., 1984; Harley and
Reynolds, 1987; Rozkot, et al., 1989; O’Neill and Chiafari, 1989). Several studies have
used a neural network algorithm and used only the -10 and -35 regions to train the
networks (Nakata et al., 1968; Lukashin, et al., 1989; Alexanchv and Mironov, 1990).

We have combined a neural network approach with two different techniques for
selecting the data that is used to train the neural net. In the first case, we have carried out a
statistical analysis of promoter and non-promoter sequences. From these results, we have
used the most infomxttive base positions to train the neural network. In the seccmd citse,
we have used our biological knowledge of promoters to set up a neural network
architecture.

System and methods

Progrims were written in .“. C progritmming language, Programming W;IScarried
out cm ir Sun SPARCstittion 1 computer from SUN Microsystems, Inc. with the l.Jnix
operating system, SunOS 4.0.

Sequence Infhnution

(’andidtite promoter sequences were obtuined from the compiltition ot }{arlcy ii~d

Reynolds ( 198’7),We htive renmvcd sequences thitt relate to niutunt promottrs itnd to
~romotcrs thirt use different sigma factors (e.g the hettt shock promoters). Sequence
mforrnittmn for these promoters was obtained frtlm Gen13ank, releuse 62.0. Each of the
12,8prorm}ters inclmled 90 bnscs of sequence uround the conserved -10 tirid -35 regions.

For the tritining of [he nctmtl network it wits neccswtry to gencritte u set of
sequences which were not promoters, “fodo this we wlu’tcxl tit rimdorn 90 btise sequences
from vurimts coding regions of known E, {d; genes. ‘Utesecoding sequtmccs were used its
cxitrnplcs of non promoters. They included .seqllcnccsfrom the following genes: !ucZYA,
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ala$ trpS, avtA, aceEF, lpd, frdA13, arnpC, aspA, pjkA, sbp, cdh, cyaA, dnaAN, pheA,
tyrA, aroF, mafEFK, lamB, and hisGCDHAFIE.

Mutual In&ormution

The sequences were aligned by them - !0 regions as published in Harley and
Reynolds (1987). The set of promoters contained 128 sequences and the set of non-
promoters contained 1300 sequences. From these two classes of sequences two data sets
wete constructed. Each set contained 64 promoters and various numbers of non-promoters.
The number of non-promoters was varied between 64 and 625. There were no sequences
in common between the two data sets. One of these, called the training set, was used to
train the neural network and the second, called the testing set, was used to test it. The
single letter designation of bases, “a, c, g, t“ was converted to a “una.ry”notation, where
“a” is replaced with the binary string “0001”, “c” with “OO1O”,“g” with “O1OO”and “t”
with “1000”. Thus each base position has a 4 bit unary code denoting the presence or
absence of the bases “a, c, g, t“. Since only one base appears at each position, each group
of four bits has only one “1” indicating the presence of one of the bases “a, c, g, t“,
depending on whether the first, second, third, or fourth bit is set to “1”, The mutual
infommtion of each of these bit positions within the class, “T” (for promoters) and “F” (for
non-promoters), was calculated for the training set according to equation (i).

C is the CIUSSof sequence, “T” for promoter and “F” for non-promoter, and ‘b =
O,I” denotes the presence or absence of bases “a, c, g, t“ at each base position. I?qutitiori
( 1) measures the mutual information between bit positions and the class, ar,d can be
interpreted as measuring (he importance of the presence, or absence, of each base in each
position for determining class. We have also measured the mutual infonmtion for pairs of
bits where the same formula applies hut the “b” summation is over the four possibilities
“00, 01, 10, 11”, This quantity meti~ures the importance in determining class of the
presence or absence of pairs of bases in the various positions, and is of interest because of
the possible interaction of the -10 and -35 regions in determining whether or not a sequence
contains a promoter. The mal valued mutual information scores may be rimked from high
to low vaiucs, with high values identifying a base position, and also the base in that
position, whose presence or absence is informative about the class. When the mutual
infommtion is applied to piiirs of bits one may determine the impo~tant pairs of base
positions, and the bases in those positions, whose presence or absence is important to
dctcrnining class.

When sequences were litter input to a Perreptron network only those bit Posi[ions
of the unary coded dittit were used that have rnu;uiil infonmttion above a certain arbitrary
cutoff viIlut!.f:or cxampie, one may choose i?~’Jtoffso that only the top 10 bit positions are
used by the network. This has the effect of reducing the number of wei~hts in the
network, which is often iin aid to achieving good genetwliuttion outside the aainmg set, and
of course, the uctuitl bit positions determined by the mutua! information may be exumined
in the context of biologicid knowledge The highest fifty mutual infortmttion vtilues of bit,
:md bit pnirs, arc presented in Table I~TIM -10 region corresponds to positions 53-58 in
Tnble 1, while the variable -3!5re~ion corresponds to positions 26-3h, (See Figure IA).
Not unexpectedly, the highest vitlues include mainly positions in the -10 itnd -3,5consensus
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Perceptwn

In the Perception neural network, there are two layers of processing units, an input
layer representing the sequences and an output layer which signals the class that the
sequence belongs to, either a promoter or non-pt emoter (see Figure 1B). A Percept. m is
trained using the sequence information translated into numerical values based on the mutual
information analyses as described above. This type of network was previously used for
recognition of ribosome binding sites (Stormo et al., 1982). In the Perception, the output
layer consists of a single unit. Its value can vary between O and 1 and is calculated
according to equations (2a) and (2b) (Rumelhart et al., 1986).

netp = \weighti x inputi + bias (~~)

i=1

(2b)

The bias twmtis equivalent to a learned weight that is connected to an input unit that always
has a value of 1. The above equation is somewhat different from the original Perception
forma!ism in that a sigmoidal threshold function was usd to generate the output value,
rather tha.1a linear step function. A value >= 0.5 predicts a promoter, while a value < ().5
predicts a non-promoter sequence. In all of the tables the results are presented as the
percent correctly predicted. This is calculated from the number of promoters with an output
~water than or equal to 0.5, divided by the total number of promoters. Similar calculations
are made for the non-promoter sequences. The number of input units was varied between
10 and 50 depending on the number of single and pairwise bit positions that WMused. A
series of real valued weights connects each input unit to the output unit. During training,
the error was calculated over all the patterns as shown in equation (3), as the difference
between the expected target value of the output unit (0,9 in the case of a promoter and 0.1
in the case of a non-promoter) and the calculated output.

Error = ~ ~(targetn - outputp)2
p=l “

(.3)

If the error was greittcr than some level (usually 10percent ot’the initial error at the start of
trtiining), then the values of the weights were changed to minimize the error by using a
gradient descent method (Rutnelhart et al., 1986). The weights were changed according to
the learning rule given in equation (4)0

AWI=
-k i)~

awl
(4)
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Table 1. 50 Highest Positions of Mutual Information

5

Rank NumBits Positions Bases
1 2 58:53 t,Not-t : t, Not_t
2 2 54:53 a~ot_a : t~ot-t
3 2
4 1
5
6 ;
7

:
! 2
10 2
11 2
12 2
13 2
14 2
15 2
16 2
17 2
18 2
19 2
20 2
21 2
22 2
23 2
24 ~

z 2
26 2
27 2
28 2
29 2
30 2
31 2
32 2
33 2
34 2
35 2
36 2
37 2
38 2

2
: 2
41 2
4’/. 2
43 2
44 2
45
46 ;
47 2
48 2
49 1
50 _l_—. —

58:54
53
58
56:53
54
58:56
53:31
56:54
54’30
57:53
55:53
58:22
58:30
58:31
53:30
53:22
54:22
53: 6
54:31
53:15
54:50
81:53
85:53
85:54
88:53
58:55
53:13
58:26
53:26
53 ; 48
58:15
56:>1
76: 5?
67:>8
53:16
58:16
55:54
58:50
53:51
53: 5
53:29
53:11
56
81:54
53:50
58:il
58
53 ,,

tNoL_t: a~ot-a
tmot_t
tNot_t
aNoG? : t4MN_t
aNot_a
tJNot_t: aNot-a
t~ot-. : t,Not-t
aNot_a: a,Not_a
a Not_a: t.Not_t
aMot_a: t,Not_t
2fiot_t : (Mot-t
tNot_t: a,Not-a
t,Not_t: t,Not-t
t,Not_t: tMot-t
tNot_t : t,Not-t
tMot_t: &Not-a
aNot_a: aNot_a
t~ot_t : t,Not-t
aMot_a: tMot_t
t,Not_t: t,N~t-,
aMot_a: tMot_t
a$lot_a : t,Not_t
aJ%t_a : t,Not_t
a~ot_a: aNot_a
gNotJJ : LNot-t
t,No[_t: t,Notzt
t,Not..t: t,Not..t
t,Not_t: t,No/-t
t,Not_t: t,Not-t
t,Not_t: t,Not-t
tJ+X_t: t.Notet
aMot_a: t,Not_t
ayot-a : tYol_t
a,Not-a: tMot_t
tNot_t : aNm-a
:Not_t: aNot-a
tNot_t : &Not_a
t,,Not_t: t,Not-t
t,Not_t: &Not_g
t,Not._t: t,Not-1
t.Nt)t_t: t,Not-t
t,Not..t: t,Not.-t
aNot_a
a.Not_a:a,Not_a
t&ot_t : t,Not_t
t,Nt)t.t : t,Not_t
g,Not_g
c~ut c
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~xpansion of this equation in terms of the output and weight vaiues gives equations {5aj
and (5b). This shows hcw the changes in the values of the weights depend on the values of
the outpu~ the expected target, and the previous weight. In equation (5a), e is the value for

the learning rate and a is the value for the momentum term used during training. These
values were usually set to 0.05 and 0.90, respectively. These constants affect the rate of
learning during the training procedure.

AW1(n+i ) = &x &ix outputl + a x AW1fn)

& = (UiI’geti - OUtpUti) X Olltpllti X ( 1- OUtPUti)

(5a)

(5b)

Experimental injorrnation

In the second method, we know from experimental work that the -10 and -35
regions are important for promoter recognition (Hawley and McCLure, 1983). Therefore,
only bases surrotm~ing these regions are used as input for the neural network. For the -10
region we use 6 bases at the positions that coincide with a -10 consensus region. From the
analysis of many promoter sequences, it 1sknown that the distance between the -35 region
and the -10 region is variable. This spacing is usually 17-1&bases but can vary between 15
and 21 bases. Therefore, we have used 12 bases beginning 27 bases away from the -10
region. This set of bases should contain information for all possible -35 regions beginning
15 to 21 bases away from the -10 region. As input for the network, these 18 bases are
extracted from the promoter sequences and are converted according to the following coding
scheme “a” = “0001”, “c” = “OO1O”,“g” = “O1OO”,and “t” = “1000”. This results in an
array of 0s and 1’sfor each sequence, of length 72. The remainder of the bases are not
included. Tnls data was used to train the back propagation network which is described
below.

Back Propagation

The back propagation network consisted of 3 layers of units, the input layer
containing 72 units, a hidden layer of 8 units and an oiitput layer of a single unit (see
Figure 1C). The 8 hidden units were chosen to represent the 7 possible -35 regions, i.e.
those separated by 15-21 bases, and the -10 region, Not all input units were connected to
every hidden unit. The input units 1-24 were connected to the first hidden unit, input units
5-28 were connected to the .seaxtd hidden unit. input units 9-32 were connected to the [bird
hidden unit, etc. Finally, the last 24 input units were connected to the eighth hidden unit.
The 24 weights from the input units to each of the first seven hidden units comprise
fcedforward subnets in the full network architecture, Each of these seven subnets wits
constrained to have the same weights so that the hidden units can respond to the presence
or absence of’a -35 signal in a tm.nslationally invariant manner. Thus, the weights in these
subnets were initialized identically, and constrained during training to have the identical
weight values. Therefore, [here is really otdy one distinct subnet for these connections, and
this single suknet is duplicated over the connections of the first seven hiddrn LJnitS to the
inputs. The tottd number of weights is 56, 48 between the input and hidden layers and 8
hctween the hidden and output layers, Thetv were also thmc bias terms. The training was
citrricd out using similar error minimization and weight change rules to those describmi
ubove (Rumelhart et n],, 1986),
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Interactwns between -IO and -35 regwns

To investigate whether the -10 and -35 regions show any interaction we have
trained a Perception using these regions either alone or in combination. The network was
trained on the -10 region alone or, on the -35 region alone, or on both regions Logether.For
this procedure, the 6 bases of the -10 region and the 6 bases of the -35 region were used
and converted with the 4 bit coding described above. This gave 24 input units when either
the -10 or -35 regions were trained alone, or 48 input units when both were used.

Results

Mutual[formation and Perception

For training the Perception, three cases were chosen using either the top 10,30 or
50 values of mutual information. In the case where only ten values were used, this
corresponded to 5 base positions within the 90 base promoter region. Using the top 30
values involved 17 positions and the top 50 values involved 25 positions. Table 2A shows
the results after training the Perception. In all cases, the network predicts the training set
with an accw-acy greater than 96.970. Iiowever, learning of the training set is better when
30 or 50 values of mutual information are used (98.4% versus 96.9%). As a measure of
how well the network can generalize, the prediction of the network was determined u~ing
the testing data set. The results, shown in Table 2B, demonstrates that the network can
predict new promoter sequences with an accuracy of 96.9%.

Table 2. Pe.tceptron using Mutual Information

(A) Training Set

Input tJnits Total Promoter Non-Promoter
10 96.9 . .3
M 99.2 98.4 100,0
50 99.2 98.4 100.0

(B) Testing Set

Input Units Total Promoter Non-Promoter—
10 7.7 96.9 98.4
a(j 98.4 96.9 100,0
50 97.7 96.9 98.4

The training and testing sets included 64 promoter and 64 non-promoter sequences There
was no duplication of sequences between the two data sets. The numbers in columns 2-4
refer to the percent predicted correctly.
-——. — —. .— —.—— ..— ——. -—
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Table 3. Back Propagation Results

Data Set Total Promoter Non-Promoter
Training 1(Y-Io 98 .4
Testimz 96:9 98.4

The training and testing sets included 64 promoter and 64 non-promoter sequences. The
numbers in the f~t row correspond to the percent predicted correctly for the training data,
while the second row corresponds to the percent correct for the testing data.

Back Propagation

The results using our experimental knowledge of promoters and the back
propagation network are shown in Table 3. In this case there were 72 input units derived
from the six bases comprising the -10 region and the 12 bases that c~mmise the 7 possible
-35 regions. After training this network, p~.~motersin the training set are predicted with
100% accuracy, On the testing set, the network can predict new promoters with an
accuracy of 96.9~0, which is equivalent to the Perception network described in the
previous section.

Interactio~* IWween the -IO and -35 regions

Since the -10 and -35 regions of promoters are known to be important for function,
and since these regions were used in previous studies (Lukashin et al., 1989), a Perception
was mined using only the bases from these regions. Six bases from the -35 region and 6
bases from the -10 region were used The network consisted of 48 input units and 1output
unit. Table 4A shows the results following tmining with a data set containing 64 promoters
and 625 non-promoters. The overall prediction rate was 99.3% (-10 and -35). Similar
results are obtained with the test set data (Table 413),where the prediction rate was 99.5%
(-10 and -35).

To determine if there might be some interaction between the -10 and -35 regions,
we compared the test results from a network that was trained using both the -10 und -35
regions (-10 and -35) versus a network that used the weights derived from training with
each region alone. To examine the importance of both conserved regions in detem+ning a
promoter sequence, we also trained a Pexceptron using just the -10 region alone or just the
-35 region. In this case the appmprikte six bases were used and the Perception consisted cf
24 input units and one output unit, The results from these netwotks (see Table 4A) show
that the overall prediction was 95,6% on the training set and 95.7% on the testing set using
the -10 region alone. For the -35 region, the results were riot as good, with 89.4% overall
prediction for training and 88.7% overall prediction for testing.

We tested whether the neural network could pickup any extra information during
training by using both the -10 and -35 regions, To do this, we compared the resul~s,using
the testing data set, m the network derived from mining with bcth tvgions versus a
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Table 4. Perceptrorn -10 and -3S Region Interaction

(A) Training
Region Total Promoter Non-Promoter

-10 Rezion 95.6 ~. i 95.5
-35 Rc~ion S9.4 92,2 89.1
-10 and -35 99.3 98.4 994

(B) Testing

&
Total Promoter Non-Promoter

922 96
-35 Region 93:7 88:;
-10 and -35 99.5 98.4 99.7
Combine -10,-35 98.5 85.9 99.!3

The numbers correspond to the percent predicted correctly. For this table, ouly the -10 and
-35 regions from the 64 promoters and cmresponding regions from the 625 non-promoters
were used for training and testing. The region refers to the region used for input to the
networks. -10 refers to training in the presence of the -10 region alone. -35 refers to
training m the presence of the -35 region alone. -10 and -35 refers to training in the
presence of both the -10 and -35 consensus sequerlces. Combine -10, -35 refers to tising
the networks trained in the presence of the -.10 alone and the -35 alone and combining
them, then testing using this combined network.

— —

network which combined the connection weights from the networks trained on the -10
region alone and trained on the -35 region alone. This network had 48 input units, 24
weights derived from the -10 region network, 24 weights derived from the -35 region, 2
bias terms, and 2 output units. Lfboth output units gave values greater than or equal to 0.5,
tien the test sequence was classified as a promoter. The results are shown in Table 4B and
indicate that promoter sequences are predicted with far less accuracy, 85.9?Z0versus
98.4%, using ihe weights derived from networks that were trained on individual regions,
then when a network was trained using both regions.

Discussion

This study investigated the utility of neural networks for lemning to distinguish
prokwjotic promoter sequences from non-promoter sequences,l’wo approaches were
employed. In the first, the sequences of promoters and non-promoters in the training set
WIm analyzed for the mutual information at each base position. “I%isinformation indicated
the base positions that best distinguished promoter sequences from non-protnoter
squences. This information was then used to train a Perception, In the second case, the
available experimental information on promoters was used to set up and train a back
propagation network. With either type of network, the results were fairly similar and the
trained networks predicted promoter and non-promoter sequences in a training and testing
data set with an accuracy greater than 96%. For the prediction of promoters these results
using neural networks seemed much higher than the results from previous studies which
used statistical methods different from neural networks. Although the exact promoters used
in these studies were not identical, there was a lot of overlap in the squences used. The
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algorithm of Mulligan et al. (1984) predicted promoter sequences at the 83% level, while
that of O’Neill and Chiafari (1989) correctly ldentitled 77% of the promoters tested.

We also investigated the effects of training a neural network on each of the -10 and
-35 consensus regions alone, versus using both regions. If there are no interactions, the
weights flom a network trained on the -10 region could be combined with the weights from
a network trained on the -35 region to predict promoters. This Ievel of prediction should be
equivalent to a network that was mined using both regions. However, our results indicate
that the network can learn to predict promoter sequences more effectively when both
regions are present during the training.

A major part of the human genome effort will be the analyses of sequences to
determine their biological functions. Ef%cient computer methods for pattern matching will
need to be developed to carry out this task. From the results presented here, it appears that
neural networks may prove useful for this problem and the method is general enough to be
applicable to most patterns where there are a representative number of known examples.
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FIGURE 1. (A) E. coli promoters. This is a diagram of the relevant features found in
prokaryotic transcriptional promoters.’l”he two conserved regions are indicated, and their
consensus squences are shown. -10 and -35 refers to their approximate lwation fmm the
start of RNA transcription. These two conserved regions can be separated by a variable
distance of between 15 and 21 bases. (B) Perception. This shows a Perception neural
network architecture, consisting of input units, which are connected to a single output unit.
The comection weights are represented by lines comecang an input unit to the output unit.
(C) Back Propagation. The back propagation network contains three layers of processing
units. The input units connect to units in the middle or hidden layer, and the hidden units
connect to the output unit. In this network, not every input unit is connected to every
hidden unit.
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